Zinc may be new non-antibiotic treatment for urinary infections

Published On 2019-03-10 14:40 GMT   |   Update On 2019-03-10 14:40 GMT

Zinc may be the new non-antibiotic treatment for urinary infections.


In an era where antimicrobial resistance is a big problem due to over usage of antibiotics, it is a welcome finding especially in cases of chronic Urinary tract infection.


New details about the role of zinc in our immune system could help the development of new non-antibiotic treatment strategies for bacterial diseases, such as urinary tract infections (UTIs). The research has been published in Proceedings of the National Academy of Sciences.


Zinc is a trace element that is necessary for a healthy immune system. A lack of zinc can make a person more susceptible to disease and illness. The recommended dietary allowance (RDA) for zinc in the United States is 8 milligrams (mg) a day for women and 11 mg a day for men. The element is naturally found in many different foods, but it is also available as a dietary supplement.


UTIs are one of the most common bacterial infections worldwide with about 150 million cases each year and can lead to serious conditions such as kidney infection and sepsis.


A team of cross-institutional University of Queensland researchers led by Professor Matt Sweet, Professor Mark Schembri and Dr Ronan Kapetanovic examined how our immune system uses zinc to fight uropathogenic Escherichia coli (UPEC) - the major cause of UTIs.


Dr Kapetanovic, from UQ's Institute for Molecular Bioscience (IMB), said researchers already knew that zinc was toxic to bacteria.


"We confirmed by direct visualisation that cells in our immune system known as macrophages deploy zinc to clear bacterial infections," Dr Kapetanovic said.


They also discovered that UPEC has a two-pronged strategy to survive the body's immune response.


"We found that, compared to non-pathogenic bacteria, UPEC can evade the zinc toxicity response of macrophages, but these bacteria also show enhanced resistance to the toxic effects of the zinc.


"These findings give us clues to how our immune system battles infections, and also potential avenues to develop treatments, such as blocking UPEC's escape from zinc to make it more sensitive to this metal.


"Treatment strategies that don't use antibiotics have the advantage of bacteria not developing resistance; if we can reprogram our immune cells to make them stronger, or change the way they respond to bacteria, we would be better equipped to fight superbugs."


UQ's School of Chemistry and Molecular Biosciences Dr Minh Duy Phan said the study also identified the full set of UPEC genes that provide protection against zinc toxicity.


"This knowledge provides another potential avenue for developing antimicrobial agents for the treatment of UTIs", Dr Phan said.


IMB PhD student Miss Claudia Stocks said the methods the team used could be applied to the study of other bacterial diseases, not just UTIs.


"Macrophages deploy zinc toxicity against several types of bacteria, such as Mycobacterium tuberculosis, Salmonella and Streptococcus, that aren't necessarily being cleared from the body by normal mechanisms," Miss Stocks said.


"We developed zinc sensors that can be adapted to study different types of bacteria, bringing us closer to understanding our immune system better and creating therapies for a range of infectious diseases."


Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News