- Home
- Editorial
- News
- Practice Guidelines
- Anesthesiology Guidelines
- Cancer Guidelines
- Cardiac Sciences Guidelines
- Critical Care Guidelines
- Dentistry Guidelines
- Dermatology Guidelines
- Diabetes and Endo Guidelines
- Diagnostics Guidelines
- ENT Guidelines
- Featured Practice Guidelines
- Gastroenterology Guidelines
- Geriatrics Guidelines
- Medicine Guidelines
- Nephrology Guidelines
- Neurosciences Guidelines
- Obs and Gynae Guidelines
- Ophthalmology Guidelines
- Orthopaedics Guidelines
- Paediatrics Guidelines
- Psychiatry Guidelines
- Pulmonology Guidelines
- Radiology Guidelines
- Surgery Guidelines
- Urology Guidelines
Ultrasound helmet for ultrasound imaging of the brain
Brett Byram, assistant professor of biomedical engineering at Vanderbilt University, is in process of developing a helmet that will allow for ultrasound imaging of the brain. This could mean real-time images during surgery that will provide a better idea of the areas that get stimulated by certain feelings or actions, and ultimately provide a way to control robotics and software.
The development would be significant as earlier used ultrasound beams bounced around inside the skull, so no useful imagery could make it out.
Ultrasound imaging is a diagnostic medical procedure that employs the use of high-frequency sound waves for the production of dynamic visual images of tissues, organs or blood flow inside the body.
For the purpose of developing the helmet, Byram has collaborated with Leon Bellan, assistant professor of mechanical engineering and biomedical engineering, and Michael Miga, Harvie Branscomb Professor, and professor of biomedical engineering, radiology, and neurological surgery.
Byram plans to use machine learning that will gradually be able to account for distortion and deliver workable images. He wants to integrate electroencephalogram technology so doctors could see not only brain perfusion - how blood flow correlates to changes in thought - but also areas of stimulation related to movement and emotion.
"The goal is to create a brain-machine interface using an ultrasound helmet and EEG," Byram said. "A lot of the technology we're using now wasn't available when people were working on this 20 or 30 years ago. Deep neural networks and machine learning have become popular, and our group is the first to show how you can use those for ultrasound beamforming."
The applications, he said, are endless. At the basic level, it could allow for images as clear or more than those doctors are accustomed to seeing the heart or womb.
Going forward, a person with limited movement due to amyotrophic lateral sclerosis (ALS) could think about wanting a glass of water, and a robotic arm could retrieve one because the helmet detected blood flow and EEG information that told it to. A student reading a paper may feel stress about a certain part that isn't properly sourced, and the computer would know to put a mark there for later editing.
Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd