Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Latest News
    • Synthetic Virus...

    Synthetic Virus developed to Tackle Antimicrobial Resistance

    Written by Anjali Nimesh Nimesh Published On 2018-01-29T19:30:48+05:30  |  Updated On 29 Jan 2018 7:30 PM IST
    Synthetic Virus developed to Tackle Antimicrobial Resistance

    In line with approach of National Physical Laboratory (NPL) to address the global threat of antimicrobial resistance by helping to develop new antibiotics, a team of researchers from NPL and UCL have engineered a purely artificial virus, which has the ability to kill bacteria on first contact.The new virus is built using the same geometric principles that determine structures of naturally occurring viruses, known as polyhedral capsids. The resulting synthetic virus acts as a 20-nm spherical 'drone' that, upon recognising bacterial cells, attacks their cell walls with bullet speed and efficacy.The study has been published in Nature Communications.


    Antibiotic resistance has become an ever-growing global challenge, with more than 700,000 people across the world dying from drug-resistant infections every year.[2] As a result, antibiotic discovery has fallen well behind its historical rate, with traditional discovery methods being exhausted. NPL is addressing technology and innovation challenges in response to this, including support for the implementation of synthetic / engineering biology.


    In contrast to a traditional antibiotic, these artificial viruses tackle a bacterium as a whole, starting with the disruption of the most complex, but vulnerable part of a bacterial cell - its membrane. This provides an advantage over an antibiotic, which must reach and hit its single target inside a bacterial cell to be effective.


    This of action means that bacteria are less likely to become resistant to the virus - opening the door to potentially more effective treatments of resistant bacteria.


    Furthermore, because such viruses leave human cells unaffected, but have the ability to infect them like viruses do, they hold promise for gene delivery and gene editing - core capabilities for gene therapy and synthetic biology - as well as for killing bacteria that hide inside human cells.


    Max Ryadnov, science leader in Biometrology at NPL:


    "This work adds to the growing toolbox of engineering metrology methods and materials being developed at NPL to realise the full potential of synthetic biology for industry and healthcare. The research may also offer long-term and creative solutions for alternative treatments of infectious diseases that are urgently needed."


    Bart Hoogenboom, Professor of Biophysics at UCL:


    "When we exposed bacterial model membranes to these synthetic viruses in our experiments, the results were devastating: within a few minutes, the membranes were completely destroyed."


    The findings pave the way for exemplar synthetic biology tools for research and therapeutic use, while demonstrating how effective innovative measurement can be in addressing real-life challenges.


    This study was funded by the Engineering and Physical Sciences Research Council (EPSRC), European Metrology Programme for Innovation and Research (EMPIR) and the Department for Business, Innovation and Skills (BEIS). Specialist measurements were performed at the Diamond Light Source.


    NPL's world-leading research is also supporting the advancement of synthetic biology through a new £7 million virtual lab to underpin the Centre for Engineering Biology, Metrology and Standards, with LGC, NIBSC and Imperial College London's SynbiCITE. This new lab aims to improve the reproducibility of research results to help convert innovation in synthetic biology into valuable products and services.

    drug-resistant infectionsImperial College londonNational Physical Laboratorypurely artificial virusresistant bacteriaSynthetic virus
    Source : Press Release

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Anjali Nimesh Nimesh
    Anjali Nimesh Nimesh
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok