Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Latest News
    • Survival of the...

    Survival of the least-fit: Antiviral drug selectively targets the nastiest viruses

    Written by Anjali Nimesh Nimesh Published On 2017-11-10T19:00:36+05:30  |  Updated On 10 Nov 2017 7:00 PM IST
    Survival of the least-fit: Antiviral drug selectively targets the nastiest viruses

    An antiviral drug that inhibits a virus' replication machinery selectively targets the most aggressive viruses, according to new research that looked at the infection of individual cells by a virus and the consequence of antiviral intervention. This new insight into the dynamics of an infection and the mechanism of an antiviral drug could not be seen by the typical approach of studying populations of cells. Researchers at Penn State, Duke University, and the University of Texas at Austin have developed a high-throughput system to study large numbers of single, infected cells that facilitated the new insight. A paper describing the results of the research appears in the journal Cell Reports.


    "Traditionally, viruses and antiviral drugs are studied by infecting a population of cells with a population of viruses," said Craig Cameron, professor and holder of the Eberly Family Chair in Biochemistry and Molecular Biology at Penn State and an author of the paper. "Both the cells and viruses vary somewhat individually, so the results that we get are averages over the population. Averages are fine when interested only in the efficacy of a drug, but studies on the single-cell level can tell you if particular members of the population are more susceptible to the treatment and when during the virus life cycle the treatment acts."


    To study the dynamics of a viral infection on individual cells, the researchers used a modified version of the poliovirus that produces a green-fluorescent protein. As a virus replicates in a cell, more and more of the green-fluorescent protein is produced, which the researchers can monitor. In order to study enough individual cells to get reliable, statistically significant results, the researchers built a microfluidic device that allows them to monitor up to 6,400 cells simultaneously.


    "We treated cells infected with poliovirus with 2'-C-methyladenosine, a viral polymerase inhibitor that stops the virus from replicating its genome -- a necessary step for the virus to produce more viruses," said Jamie J. Arnold, an associate research professor at Penn State and another author of the paper. "This drug helped pave the way for the development of sofosbuvir, an antiviral drug that is part of the cocktail of drugs that is used to cure hepatitis C. As expected from previous studies, the drug eliminated about 50% of the infections, but we were surprised to see that the drug was most effective against viruses that were growing the fastest, something we could have never seen if we weren't looking at cells individually."


    The researchers also followed the time course and dynamics of viral infections in individual cells. They studied the time at which the virus began to replicate, the rate of replication, and the maximum level of virus growth. By studying cells individually, the researchers were able to show which of these factors could be affected by slight variation between the cells and which could be affected by variation in the viruses.


    "Some aspects of the dynamics of an infection seem to be controlled more by variation that exists between individual cells but other aspects are due to genetic variation within the virus population," said Cameron. "With our new tool, we can begin to identify the specific factors that vary between the cells or between the viruses that are responsible for the different outcomes. Understanding these mechanisms will allow us to be smarter in the way we design new antiviral drugs."


    For more details click on the link: http://dx.doi.org/10.1016/j.celrep.2017.10.051

    Craig CameronDuke UniversityJamie J Arnoldjournal Cell Reportsviral infectionsViruses
    Source : Eureka Alert

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Anjali Nimesh Nimesh
    Anjali Nimesh Nimesh
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok