Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Latest News
    • Strategy to use...

    Strategy to use quinolones

    Written by Anjali Nimesh Nimesh Published On 2017-12-10T19:22:13+05:30  |  Updated On 10 Dec 2017 7:22 PM IST
    Strategy to use quinolones

    MIT researchers have discovered a way to make bacteria more vulnerable to a class of antibiotics known as quinolones, which include ciprofloxacin and are often used to treat infections such as Escherichia coli and Staphylococcus aureus.




    The new strategy overcomes a key limitation of these drugs, which is that they often fail against infections that feature a very high density of bacteria. These include many chronic, difficult-to-treat infections, such as Pseudomonas aeruginosa, often found in the lungs of cystic fibrosis patients, and methicillin-resistant Staphylococcus aureus (MRSA).


    "Given that the number of new antibiotics being developed is diminishing, we face challenges in treating these infections. So efforts such as this could enable us to expand the efficacy of existing antibiotics," says James Collins, the Termeer Professor of Medical Engineering and Science in MIT's Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering and the senior author of the study.


    Arnaud Gutierrez, a former MIT postdoc, and Saloni Jain, a recent Boston University PhD recipient, are the lead authors of the study, which appears in the Dec. 7 online edition of Molecular Cell.


    Overcoming bacterial defenses


    Bacteria that have become tolerant to a drug enter a physiological state that allows them to evade the drug's action. (This is different from bacterial resistance, which occurs when microbes acquire genetic mutations that protect them from antibiotics.) "Tolerance is not well-understood, and we don't have the means to circumvent it or overcome it," Collins says.


    In a study published in 2011, Collins and his colleagues found that they could increase the ability of antibiotics known as aminoglycosides to kill drug-tolerant bacteria by delivering a type of sugar along with the drug. The sugar helps to boost the metabolism of the bacteria, making it more likely that the microbes will undergo cell death in response to the DNA damage caused by the antibiotic.


    However, aminoglycosides can have serious side effects, so they are not widely used. In their new study, Collins and his colleagues decided to explore whether they could use a similar approach to boost the effectiveness of quinolones, a class of antibiotics used more often than aminoglycosides. Quinolones work by interfering with bacterial enzymes called topoisomerases, which help with DNA replication and repair.


    With quinolones, the researchers found that it wasn't enough to add just sugar; they also had to add a type of molecule known as a terminal electron acceptor. Electron acceptors play an essential role in cellular respiration, the process that bacteria use to extract energy from sugar. In cells, the electron acceptor is usually oxygen, but other molecules, including fumarate, an acidic organic compound that is used as a food additive, can also be used.


    In tests in high-density bacterial colonies grown in a lab dish, the researchers found that delivering quinolones along with glucose and fumarate could eliminate several types of bacteria, including Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium smegmatis, a close relative of the bacterium that causes tuberculosis.


    "If you simply add a carbon source like glucose, that's not enough to enable the quinolone to kill. If you simply add oxygen, or another terminal electron acceptor, that by itself is not enough to cause killing either. But if you combine the two, you can eradicate the tolerant infection," Collins says.


    Metabolic state


    The findings suggest that high-density bacterial infections rapidly consume nutrients and oxygen from their environment, which then provokes them to enter a starvation state that helps them to survive. In this state, they greatly reduce their metabolic activity, which allows them to avoid the cell death pathway that is normally triggered when DNA is damaged by antibiotics.


    "This finding highlights that the metabolic state of the bug significantly influences how the antibiotic will impact the bug. And, for the antibiotic to be effective as a killing agent, it requires downstream cellular respiration as part of the process," Collins says.


    The researchers now hope to test this approach in bacterial infections in animals, and they are also exploring how to best deliver the drug combination for different types of infections. A topical treatment could work well for Staphylococcus aureusinfections, while an inhaled version could be used to treat Pseudomonas aeruginosa infections of the lungs, Collins says.


    Collins also hopes to test this approach with other types of antibiotics, including the class that includes penicillin and ampicillin.


    "This study encourages work to find new ways to stimulate bacterial respiration and thereby enhance the production of reactive oxygen (or even non-oxygen) species during antibiotic treatment, for the better eradication of bacterial pathogens, particularly those having the low metabolic activity that may render them tolerant to antimicrobials," says Karl Drlica, a professor at the Public Health Research Institute at Rutgers New Jersey Medical School, who was not involved in the research.



    CiprofloxacinDNAJames CollinsKarl Drlicalow metabolicmetabolismoxygenPseudomonas aeruginosaPublic Health Research Institutequinolones
    Source : Press Release

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Anjali Nimesh Nimesh
    Anjali Nimesh Nimesh
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok