- Home
- Editorial
- News
- Practice Guidelines
- Anesthesiology Guidelines
- Cancer Guidelines
- Cardiac Sciences Guidelines
- Critical Care Guidelines
- Dentistry Guidelines
- Dermatology Guidelines
- Diabetes and Endo Guidelines
- Diagnostics Guidelines
- ENT Guidelines
- Featured Practice Guidelines
- Gastroenterology Guidelines
- Geriatrics Guidelines
- Medicine Guidelines
- Nephrology Guidelines
- Neurosciences Guidelines
- Obs and Gynae Guidelines
- Ophthalmology Guidelines
- Orthopaedics Guidelines
- Paediatrics Guidelines
- Psychiatry Guidelines
- Pulmonology Guidelines
- Radiology Guidelines
- Surgery Guidelines
- Urology Guidelines
Smartphone microscope spots skin cancer
New York: In settings where traditional microscope is not available, smartphones can be used as microscopes to detect skin cancer with a reasonable accuracy, new research has found.
"Doctors in some remote areas don't have access to the high-powered microscopes we use to evaluate skin samples," said study lead author Richard Jahan-Tigh, assistant professor at The University of Texas Health Science Centre at Houston (UTHealth), US.
"Doctors there could conceivably use their smartphones to photograph growths and forward them for examination," Jahan-Tigh noted.
When it comes to the diagnosis of cancer, smartphone microscopes are reasonably accurate, showed the findings published in the journal Archives of Pathology & Laboratory Medicine.
Between two and three million non-melanoma skin cancers and 132,000 melanoma skin cancers occur globally each year, the study pointed out.
A smartphone microscope can be made with a three mm ball lens, a tiny piece of plastic to hold the ball lens over the smartphone lens and tape to grip everything in place.
A ball lens costs about $14 (Rs. 943) at an electronics store and is typically used for laser optics.
Here is how a smartphone microscope works.
A doctor or technician holds a smartphone microscope over a skin sample that has been placed on a slide and waits for the sample to come into focus.
The doctor then either reads the sample if he or she is a pathologist, or takes a photo and emails it to a pathologist for interpretation.
For the study, the researchers examined 1,021 slides of specimens.
"We did a head-to-head comparison with a traditional light microscope and while the smartphone microscope wasn't as accurate it resulted in the detection of about 90 percent of the non-melanoma skin cancers," Jahan-Tigh said.
"With the smartphone microscope, the detection rate for melanomas was 60 percent," Jahan-Tigh pointed out.
"This is a good first step to show that smartphone microscopy has a future in dermatology and pathology," Jahan-Tigh said.
Source : IANS
"Doctors in some remote areas don't have access to the high-powered microscopes we use to evaluate skin samples," said study lead author Richard Jahan-Tigh, assistant professor at The University of Texas Health Science Centre at Houston (UTHealth), US.
"Doctors there could conceivably use their smartphones to photograph growths and forward them for examination," Jahan-Tigh noted.
When it comes to the diagnosis of cancer, smartphone microscopes are reasonably accurate, showed the findings published in the journal Archives of Pathology & Laboratory Medicine.
Between two and three million non-melanoma skin cancers and 132,000 melanoma skin cancers occur globally each year, the study pointed out.
A smartphone microscope can be made with a three mm ball lens, a tiny piece of plastic to hold the ball lens over the smartphone lens and tape to grip everything in place.
A ball lens costs about $14 (Rs. 943) at an electronics store and is typically used for laser optics.
Here is how a smartphone microscope works.
A doctor or technician holds a smartphone microscope over a skin sample that has been placed on a slide and waits for the sample to come into focus.
The doctor then either reads the sample if he or she is a pathologist, or takes a photo and emails it to a pathologist for interpretation.
For the study, the researchers examined 1,021 slides of specimens.
"We did a head-to-head comparison with a traditional light microscope and while the smartphone microscope wasn't as accurate it resulted in the detection of about 90 percent of the non-melanoma skin cancers," Jahan-Tigh said.
"With the smartphone microscope, the detection rate for melanomas was 60 percent," Jahan-Tigh pointed out.
"This is a good first step to show that smartphone microscopy has a future in dermatology and pathology," Jahan-Tigh said.
Source : IANS
cancerjournal Archives of Pathology & Laboratory MedicineRichard Jahan-Tighskin cancerThe University of Texas Health Science Centre
Next Story
NO DATA FOUND
Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd