Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Editors Pick
    • Scrap the stethoscope...

    Scrap the stethoscope -- new way to measure vital signs with radio waves

    Written by Anjali Nimesh Nimesh Published On 2017-12-14T20:00:00+05:30  |  Updated On 14 Dec 2017 8:00 PM IST
    Scrap the stethoscope -- new way to measure vital signs with radio waves

    No visit to the doctor's office is complete without a blood-pressure cuff squeezing your arm and a cold stethoscope placed on your chest. But what if your vital signs could be gathered, without contact, as you sit in the waiting room or the comfort of your own home?


    Cornell University engineers have demonstrated a method for gathering blood pressure, heart rate and breath rate using a cheap and covert system of radio-frequency signals and microchip "tags," similar to the anti-theft tags department stores place on clothing and electronics.


    The cracker-sized tags measure mechanical motion by emitting radio waves that bounce off the body and internal organs and are then detected by an electronic reader that gathers the data from a location elsewhere in the room.


    The system works like radar, according to Edwin Kan, professor of electrical and computer engineering. But unlike most radar systems that rely solely on radio waves to measure movement, Kan's system integrates "near-field coherent sensing," which is better at directing electromagnetic signals into body tissue, allowing the tags to measure internal body movement such as a heart as it beats or blood as it pulses under the skin.


    The tags are powered by electromagnetic energy supplied by a central reader, and because each tag has a unique identification code it transmits with its signal, Kan said up to 200 people can be monitored simultaneously using just one central reader.


    "If this is an emergency room, everybody that comes in can wear these tags or can simply put tags in their front pockets, and everybody's vital signs can be monitored at the same time. I'll know exactly which person each of the vital signs belongs to," said Kan.


    The idea originated after Kan and his graduate student, Xiaonan Hui, visited the Center for Sleep Medicine at Weill Cornell Medicine and NewYork-Presbyterian, where measuring vital signs can interrupt sleep patterns.


    "We were thinking about the kind of technology we were already using in our lab and thought we could probably get a signal from those vital signs," said Hui. "But after we figured out the theory and did the experiments, the signal quality was better than our prediction."


    The signal is as accurate as an electrocardiogram or a blood-pressure cuff, according to Kan, who said he believes the technology could also be used to measure bowel movement, eye movement and many other internal mechanical motions produced by the body.


    Kan and Hui plan to do more extensive testing with Dr. Ana Krieger, medical director of the Center for Sleep Medicine and associate professor of clinical medicine, of medicine in clinical neurology and of clinical genetic medicine at Weill Cornell Medicine. They're also working with professor Jintu Fan and associate professor Huiju Park from Cornell's Department of Fiber Science and Apparel Design, who have demonstrated a way to embroider the tags directly onto clothing using fibers coated with nanoparticles.


    Hui envisions a future in which clothing can monitor health in real time, with little or no effort required by the user.


    "For every garment in our daily use, there could be a tag on them, and your cellphone will read your vital signs and will tell you some kind of information about your condition that day," said Hui.


    The system is detailed in the paper "Monitoring Vital Signs Over Multiplexed Radio by Near-Field Coherent Sensing," which was published in the journal Nature Electronics.

    blood pressureDr Ana KriegerHuiju Parkjournal Nature Electronicsmicrochipradio frequencyradio wavesstethoscopeVital Signs
    Source : Eureka Alert

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Anjali Nimesh Nimesh
    Anjali Nimesh Nimesh
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok