- Home
- Editorial
- News
- Practice Guidelines
- Anesthesiology Guidelines
- Cancer Guidelines
- Cardiac Sciences Guidelines
- Critical Care Guidelines
- Dentistry Guidelines
- Dermatology Guidelines
- Diabetes and Endo Guidelines
- Diagnostics Guidelines
- ENT Guidelines
- Featured Practice Guidelines
- Gastroenterology Guidelines
- Geriatrics Guidelines
- Medicine Guidelines
- Nephrology Guidelines
- Neurosciences Guidelines
- Obs and Gynae Guidelines
- Ophthalmology Guidelines
- Orthopaedics Guidelines
- Paediatrics Guidelines
- Psychiatry Guidelines
- Pulmonology Guidelines
- Radiology Guidelines
- Surgery Guidelines
- Urology Guidelines
Scientists find new environment friendly tool to kill mosquitoes that spread Malaria
Scientists have finally identified new environment friendly tool to kill mosquitoes that cause Malaria.
Researchers at the universities in Stockholm and Lund, in collaboration with researchers from the University of California, have found a new toxin that selectively targets the anopheles mosquito. The neurotoxin isn't harmful to any living thing except Anopheles mosquitoes that spread malaria.
This can lead to innovative and environmentally friendly approaches to reduce malaria. The results of study have been published in Nature Communications.
Nearly half the world's population lives in areas vulnerable to malaria which kills roughly 450,000 people per year, most of them children and pregnant women. Today, insecticides and mosquito nets treated with insecticides are the main means of combating the spread of malaria.Progress fighting the disease is threatened as Anopheles develop resistance to chemical insecticides used to control them. There is also great concern about toxic side effects of the chemicals.
Therefore new methods of combating malaria mosquitoes must be developed constantly as mosquitoes become resistant to most toxins over time.
About 30 years ago, scientists identified a strain of bacteria that kills Anopheles. Since the bacteria's method of attack was not understood, it couldn't be replicated or used as an alternative to chemical insecticides -- until now.
An international team led by Sarjeet Gill, distinguished professor of molecular, cell and systems biology at UC Riverside, has identified a neurotoxin produced by the bacteria, and determined how it kills Anopheles.
It took Gill and his team 10 years to achieve a breakthrough in their quest to understand the bacteria, and Gill attributes the success to modern gene sequencing techniques. They hit the bacteria with radiation, creating mutant bacterial strains that could not produce the toxin. By comparing the nontoxic strain to the one that kills Anopheles, they found proteins in the bacteria that are the keys to toxin production.
"Identifying the mechanisms by which the bacteria targets Anopheles has not been easy," Gill said. "We were excited not only to find the neurotoxin, called PMP1, but also several proteins that likely protect PMP1 as it's being absorbed in the mosquito's gut."
Many neurotoxins generally target vertebrates, and PMP1 bears 30 percent chemical similarity to botulinum or tetanus, both highly toxic to humans. Because the neurotoxin does not affect humans, vertebrates, fish, or even other insects, Gill believes the bacteria that produce PMP1 likely co-evolved along with Anopheles mosquitoes.
"It was surprising for us that PMP1 is not toxic to mice even by injection," Gill said.
Members of Gill's team include postdoctoral scholars Estefania Contreras, Jianwu Chen, Harpal Dhillon, and Nadia Qureshi as well as graduate student Swati Chawla from UC Riverside, Geoffrey Masuyer and Pål Stenmark from Stockholm University and Han Lim Lee from the Institute for Medical Research in Malaysia. Their work was funded by the U.S. National Institutes of Health.
The team has applied for a patent on this discovery, and now hopes to find partners that will help them develop their bacteria-based Anopheles insecticide. These findings also open the door to new avenues of research on additional environmentally friendly insecticides.
"There is a high likelihood that if PMP1 evolved to kill the Anopheles mosquito, there are other toxins that can kill other disease-spreading pests," Gill said. "This could just be the start of a new way to prevent hundreds of thousands from getting sick and dying every year."
Next Story
NO DATA FOUND
Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd