This site is intended for Healthcare professionals only.

Novel device that quickly identifies severity of concussions


Novel device that quickly identifies severity of concussions

In children, as many as a quarter of annual traumatic brain injuries are sustained during high-contact recreational activities or sports. At present current methods for diagnosing and evaluating concussion severity are not very accurate leading to incomplete, misleading or conflicting information.

The scientists of the Medical University of South Carolina and  The Citadel conducted a study to evaluate a new device, the Blink ReflexometerTM for measuring concussion severity objectively. It has been found that device measuring blink reflex parameters has great potential as a field-side diagnostic tool to assist athletic trainers and medical staff in determining athletes’ concussive status and making appropriate decisions to remove them from play.It quickly identifies the severity of concussions for initiation of a prompt action.The promising findings of that study are reported in the January issue of Cogent Engineering.

Tsai, who developed the Blink ReflexometerTM with the support of the Zucker Institute for Applied Neurosciences (ZIAN), became acquainted with Garner via her prior doctoral and postdoctoral work in MUSC’s Department of Neurology. When Tsai asked if she might be interested in testing the device in a group of healthy participants, Garner jumped at the opportunity.

“I was excited to see this type of technology coming out to help us better pinpoint and potentially aid in the diagnosis of concussion,” said Garner. “Concussion is a mild traumatic brain injury and we know it’s under-reported because, so often, it goes unnoticed or undiagnosed. The chance to test a piece of equipment that can be used field-side to assess concussions was especially compelling.”

A high-speed videography-based device, the Blink ReflexometerTM triggers, records and analyzes detailed information about a person’s blink reflex. The person being evaluated wears a mask that delivers three to five air puffs at random intervals over 20 seconds to the outer corner of the right or left eye (randomly selected). After approximately 20 seconds of rest, two more sets of puffs are delivered to complete the session (a total of 6 to 12 puffs per session). The blink reflex is recorded at 280 frames/second and specific frames are then isolated and analyzed.

Garner collected blink reflex data from 24 Division I, male football players (18-22 years of age) over the 2015 and 2016 athletic seasons. Preseason baseline values were established for ten blink reflex parameters, athletic history, physical examination, balance parameters and neurocognitive test scores. During the study, participants were divided into two sub-groups based on whether a concussive event was suspected (Head Impact [n=14]; Control [n=10; age matched]). When a concussion or suspected concussion occurred, participants were re-tested within one to 48 hours after the event to collect post-event blink reflex measurements and standard concussion evaluation protocol results.

First, the team investigated whether changes in the blink reflex after a concussive event could be differentiated from normal blink reflex changes that are known to occur during active sports play. Control athlete data revealed significant differences in specific blink reflex parameters between baseline and active play. After sports play, Control athletes (those without a head impact during the study period) had significantly increased blink latency, decreased differential latency, decreased lid velocity, longer time to open, fewer oscillations (cycles of up/down upper eyelid movement after a blink) and shorter total blink duration. Post-impact parameters among Head Impact athletes showed decreased blink latency, increased differential latency (time difference between start of ipsilateral eye movement and start of contralateral eye movement), decreased log of time to open and increased log of number of oscillations compared to their baseline values.

Significant between-group differences in blink reflex changes were also found. Compared to their baseline values, Head Impact athletes had decreased blink latency, increased differential latency and larger lid excursions post-impact, while Controls had increased blink latency, smaller lid excursions and decreased log of number of oscillations after activity.

“A human’s blink reflex has a long pathway — originating at the facial area and continuing to the brain stem. If any place along that pathway is damaged, changes in the blink reflex can indicate that there is a potential problem,” explained Garner. “We now know that concussions and normal play both affect the blink parameters, but in differing directions. Our observations identified something distinctly different occurring in the concussion brains that can serve as a valuable new indicator for diagnosing the condition.”

These results confirm that a device measuring blink reflex parameters has great potential as a field-side diagnostic tool to assist athletic trainers and medical staff in determining athletes’ concussive status and making appropriate decisions to remove them from play. Importantly, because blink parameter assessment provides an objective measure of a primitive reflex, athletes cannot manipulate it.

The authors emphasize that reporting these study findings is not intended to endorse the use of this particular device but to support the use of blink reflex parameter assessment as an objective measure of head impact severity immediately after the event and during recovery. In the future, Garner sees blink reflex measurement being used to assess a broad range of neurological disorders.

“We’re now collecting normative blink reflex data in different age groups and other sports, with a future goal of collecting data from people with neurological diseases like Parkinson’s and multiple sclerosis,” said Garner. “We hope that one day we’ll be able to use blink reflex data to help determine severity or progression in other diseases. There’s really wide potential for its application.”

For more details click on the link: http://dx.doi.org/10.1080/23311916.2018.1429110

The following two tabs change content below.
Anjali Nimesh

Anjali Nimesh

Anjali Nimesh Joined Medical Dialogue as Reporter in 2016. she covers all the medical specialty news in different medical categories. She also covers the Medical guidelines, Medical Journals, rare medical surgeries as well as all the updates in medical filed. She is a graduate from Dr. Bhimrao Ambedkar University. She can be contacted at editorial@medicaldialogues.in Contact no. 011-43720751
Source: Eureka Alert

Share your Opinion Disclaimer

Sort by: Newest | Oldest | Most Voted