This site is intended for Healthcare professionals only.

New substance enhances efficacy of Anti-tubercular drugs by 100 fold


New substance enhances efficacy of Anti-tubercular drugs by 100 fold

In search of new strategies against life-threatening tuberculosis infections, a team from the Technical University of Munich (TUM), as well as Harvard University and Texas A&M University in the USA have found a new ally. They discovered a substance that interferes with the mycomembrane formation of the bacterium. It is effective even in low concentrations and when combined with known antibiotics their effectiveness is improved by up to 100-fold.

Among the greatest challenges when treating life-threatening tuberculosis infections is the increasing resistance to antibiotics. But the pathogen itself also makes the life of doctors difficult: its dense mycomembrane hampers the effect of many medications. A team of scientists headed by Stephan A. Sieber, Professor of Organic Chemistry at TU Munich, has discovered a substance that perturbs the formation of this membrane significantly.

The mycomembrane of the tuberculosis pathogen Mycobacterium tuberculosis consists of a lipid double layer that encapsulates the cell wall, forming an exterior barrier. Structural hallmarks are mycolic acids, branched beta-hydroxy fatty acids with two long hydrocarbon chains.

The team hypothesizes that similarly structured beta lactones could “mask” themselves as mycolic acid to enter the mycolic acid metabolic pathways and then block the decisive enzymes.

Helpful disrupter

In the context of an extensive search, the interdisciplinary team of scientists hit the bullseye with the beta lactone EZ120. It does indeed inhibit the biosynthesis of the mycomembrane and kills mycobacteria effectively.

Using enzyme assays and mass spectroscopy investigations, Dr. Johannes Lehmann, a researcher at the Chair of Organic Chemistry II at TU Munich, demonstrated during his doctoral work that the new inhibitor blocks especially the enzymes Pks13 and Ag85, which play a key role in the development of mycomembranes.

EZ120 is effective even in low doses, easily passes the mycomembrane and exhibits only low toxicity to human cells. The combined application of this substance with known antibiotics showed a synergistic effect leading to significantly increased effectiveness.”Vancomycin, a common antibiotic, and EZ120 work together very well,” says Prof. Sieber, who heads the Chair of Organic Chemistry II. “When used together, the dose can be reduced over 100-fold.

“The scientists suspect that disrupting the mycomembrane enables antibiotics to enter the bacteria more easily. This is a new mode of action and might be a starting point for novel tuberculosis therapies.

The research was funded by the German Research Foundation (SFB 749 and Cluster of Excellence “Center for Integrated Protein Science”), the National Institutes of Health (USA) and the German National Academic Foundation (Studienstiftung des Deutschen Volkes). Researchers from the Harvard T.H. Chan School of Public Health and Texas A & M University (College Station, USA) also participated in the research.

For more details click on the link: DOI: 10.1002/anie.201709365

The following two tabs change content below.
Anjali Nimesh

Anjali Nimesh

Anjali Nimesh Joined Medical Dialogue as Reporter in 2016. she covers all the medical specialty news in different medical categories. She also covers the Medical guidelines, Medical Journals, rare medical surgeries as well as all the updates in medical filed. She is a graduate from Dr. Bhimrao Ambedkar University. She can be contacted at editorial@medicaldialogues.in Contact no. 011-43720751
Source: press release

Share your Opinion Disclaimer

Sort by: Newest | Oldest | Most Voted
  1. Such type of co therapy is really needed in Indian scenario where MDR TB is really a menace. Any information regarding Its availability, cost, dose n duration in India…..is desirable.