- Home
- Editorial
- News
- Practice Guidelines
- Anesthesiology Guidelines
- Cancer Guidelines
- Cardiac Sciences Guidelines
- Critical Care Guidelines
- Dentistry Guidelines
- Dermatology Guidelines
- Diabetes and Endo Guidelines
- Diagnostics Guidelines
- ENT Guidelines
- Featured Practice Guidelines
- Gastroenterology Guidelines
- Geriatrics Guidelines
- Medicine Guidelines
- Nephrology Guidelines
- Neurosciences Guidelines
- Obs and Gynae Guidelines
- Ophthalmology Guidelines
- Orthopaedics Guidelines
- Paediatrics Guidelines
- Psychiatry Guidelines
- Pulmonology Guidelines
- Radiology Guidelines
- Surgery Guidelines
- Urology Guidelines
New painless microneedles technique for diagnosing major illnesses
ALBUQUERQUE, N.M. -- Scientists have discovered a new quickest, least painful and most effective method for diagnosing diseases. The new technique involves using microneedles able to draw relatively large amounts of interstitial fluid for analysis for the diagnosis of diseases. Polsky, along with other Sandia researchers described the new technique in a paper published in the Nature journal, Communications Biology.
"We believe interstitial fluid has tremendous diagnostic potential, but there has been a problem with gathering sufficient quantities for clinical analysis," said Polsky. "Dermal interstitial fluid, because of its important regulatory functions in the body, actually carries more immune cells than blood, so it might even predict the onset of some diseases more quickly than other methods."
Interstitial fluid, the transparent fluid that surrounds all human cells, is most commonly experienced as the liquid that puffs up blisters. It is so important for the transport of biomolecules between cells and as an intermediary between blood and the lymphatic system that some researchers have referred to it, like skin, as another bodily organ.
The new method's larger draws could be more effective in rapidly measuring exposure to chemical and biological warfare agents as well as diagnosing cancer and other diseases, says Sandia National Laboratories researcher and team lead Ronen Polsky, who is principal investigator on the project sponsored by the Defense Threat Reduction Agency and Sandia's Laboratory Directed Research and Development program.
The relatively large quantities of pure interstitial fluid extracted, which have never before been achieved, making it possible to create a database of testable molecules, such as proteins, nucleotides, small molecules and other cell-to-cell signalling vesicles called exosomes. Their presence or absence in a patient's interstitial fluid would then indicate when an individual's data is transmitted by electronic means to a future data centre, whether bodily disorders like cancers, liver disease or other problems might be afoot.
The new microneedle extraction protocol achieved its latest results by modifying a technique described in a 1999 technical paper. The original technique drew fluid with a microneedle attached to a flat substrate penetrating the skin. In the recent modification, a concentric ring from a horizontally sliced insulin pen injector surrounding the needle was used serendipitously and a far greater amount of fluid became available.
"The earlier paper showed less than a microliter per insertion and our new needles were getting up to 2 microliters per needle, so we hypothesized the difference had to be the mounting around the needle modulating the pressure pressed on the skin," said Sandia researcher Phillip Miller, the lead author on the paper. "By creating arrays of needles, our extractable amount increased from 2 microliters to up to 20 microliters in human subjects." One microliter is about 0.000034 fluid ounces.
Interstitial fluid's advantage for patients is that it can be probed by 1.5-millimeter (approximately .06 inches) needles that are too short to reach nerves that cause pain. It also has no red blood cells to cloud the results of tests. Until this latest research, the fluid had only one difficulty: the inability of researchers to collect enough of it unspoiled by cell fragments to perform an adequate number of tests for complete characterization. A microneedle pressed into the skin would send up just the interstitial fluid it had displaced -- a fraction of a microliter. Alternatively, inserting a tiny fluid pump brought forth large but damaged quantities of fluid.
More tests will be needed to collect data on those interstitial fluid components that mirror in kind, though not in quantity, many of those available for blood. Once achieved, the stage will be set for simpler, cheaper, faster, painless tests expected in the future to be transmitted electronically from a participant's wrist watch to a central data bank, to determine in real-time the existence of a medical problem and its remedy at the earliest stage.
It will take many years to make a complete database for the world's diseases, Polsky said. So currently, he and his team are starting a new project to look at biomarkers in interstitial fluid that evolve after flu vaccinations. The effort will use volunteer Sandia employees. "Flu vaccinations are an ideal way to study the pathogenesis of infectious diseases and this study can lead to a new way to diagnose influenza and characterize its spread," said Polsky.
For more details click on the link: https://doi.org/10.1038/s42003-018-0170-z
Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd