Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Latest News
    • Manipulating cells may...

    Manipulating cells may help in treating Parkinson's disease

    Written by Anjali Nimesh Nimesh Published On 2017-07-13T09:10:54+05:30  |  Updated On 13 July 2017 9:10 AM IST
    Manipulating cells may help in treating Parkinsons disease

    Washington D.C. [USA] : According to recent study, advancements in materials from this study could potentially help patients requiring stem cell therapies for spinal cord injuries, stroke, Parkinson's disease, Alzheimer's disease, arthritic joints or any other condition requiring tissue regeneration.


    "It's important in the context of cell therapies for people to cure these diseases or regenerate tissues that are no longer functional," shared Samuel I. Stupp, director of Northwestern's Simpson Querrey Institute for BioNanotechnology and Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering.


    Cells in our bodies are constantly being signaled with many types of instructions coming from proteins and other molecules present in the matrices that surround them.


    For example, these can be cues for cells to express specific genes so they can proliferate or differentiate into several types of cells leading to growth or regeneration of tissues.


    One of the marvels of this signaling machinery is the built-in capacity in living organisms to make signals stop and re-start as needed, or to switch off one signal and activate a different one to orchestrate very complex processes.


    Building artificial materials with this type of dynamic capacity for regenerative therapies has been virtually impossible so far.


    The new work published today reports the development of the first synthetic material that has the capability to trigger reversibly this type of dynamic signaling.


    The platform could not only lead to materials that manage stem cells for more effective regenerative therapies, but will also allow scientists to explore and discover in the laboratory new ways to control the fate of cells and their functions.


    One of the findings is the possibility of using the synthetic material to signal neural stem cells to proliferate, then at a specific time selected by the operator, trigger their differentiation into neurons and then return the stem cells back to a proliferative state on demand.


    The paper also reports that spinal cord neural stem cells, initially grouped into structures known as "neurospheres," can be driven to spread out and differentiate using a signal.


    But when this signal is switched off, the cells spontaneously re-group themselves into colonies. This uncovers strong interactions among these cells that could be important in understanding developmental and regenerative cues.


    The potential use of the new technology to manipulate cells could help cure a patient with Parkinson's disease.


    The patient's own skin cells could be converted to stem cells using existing techniques.


    The new technology could help expand the newly converted stem cells in vitro -- in the lab -- and then drive their differentiation into dopamine-producing neurons before transplantation back to the patient.


    In the new technology, materials are chemically decorated with different strands of DNA, each designed to display a different signal to cells.


    To activate signals to cells, soluble molecules containing complementary DNA strands coupled to peptides are added to the material to create DNA double helices displaying the signal. By adding a few drops of the DNA-peptide conjugate, a green light is given to produce more stem cells.


    The approach to provide the material with dynamic intelligence is to expose the surface to a soluble single-stranded DNA molecule designed to "grab" the signal-containing strand of the duplex and form a new DNA double helix.


    This new duplex is no longer attached to the material surface and washes away, thus switching the biological signal off. To turn the signal back on, all that is needed is to now introduce a new copy of single-stranded DNA bearing a signal that will reattach to the material's surface.


    "People would love to have cell therapies that utilize stem cells derived from their own bodies to regenerate tissue. In principle, this will eventually be possible, but one needs procedures that are effective at expanding and differentiating cells in order to do so. Our technology does that," noted Stupp.


    While this process is currently only done in vitro with the vision of then transplanting cells, Stupp said in the future it might be possible to perform this process in vivo.


    The stem cells would be implanted in the clinic, encapsulated in the type of material described in the new work, via an injection and targeted to a particular spot.


    Then the soluble molecules would be given to the patient to manipulate proliferation and differentiation of transplanted cells.


    The study was published in journal Nature Communications.

    cellsCommunicationsDNAjournal Naturejournal Nature CommunicationsNature CommunicationsParkinson's disease
    Source : ANI

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Anjali Nimesh Nimesh
    Anjali Nimesh Nimesh
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok