- Home
- Editorial
- News
- Practice Guidelines
- Anesthesiology Guidelines
- Cancer Guidelines
- Cardiac Sciences Guidelines
- Critical Care Guidelines
- Dentistry Guidelines
- Dermatology Guidelines
- Diabetes and Endo Guidelines
- Diagnostics Guidelines
- ENT Guidelines
- Featured Practice Guidelines
- Gastroenterology Guidelines
- Geriatrics Guidelines
- Medicine Guidelines
- Nephrology Guidelines
- Neurosciences Guidelines
- Obs and Gynae Guidelines
- Ophthalmology Guidelines
- Orthopaedics Guidelines
- Paediatrics Guidelines
- Psychiatry Guidelines
- Pulmonology Guidelines
- Radiology Guidelines
- Surgery Guidelines
- Urology Guidelines
Kagami–Ogata syndrome with polyhydramnios and preterm delivery: a case report
Dr Haipeng Huang at Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan and colleagues have reported a rare case of Kagami–Ogata syndrome. The case has appeared in the Journal of Medical Case Reports.
Kagami–Ogata syndrome is caused by abnormal genomic imprinting in the long arm of the chromosome 14q32.2 region. Its clinical manifestations include polyhydramnios in the fetal stage, respiratory insufficiency because of a small thorax, abdominal wall abnormalities, and peculiar facial features after birth.
The patient was a 38-year-old Japanese primigravida woman referred to this hospital in the 19th week of pregnancy for suspected omphalocele. Her blood pressure was normal, height was 169 cm, body weight was 58 kg, body mass index (BMI) was 22, and she had no lower limb oedema. She had a history of hypothyroidism but was prescribed orally administered levothyroxine (50 μg/day) prior to conception and was euthyroid. An ultrasound (US) scan prior to her referral to this hospital revealed fetal omphalocele. The estimated fetal weight was 365 g (+ 2.0 SD), which was large for the date, and amniotic fluid was 130 cm, indicating polyhydramnios. Middle cerebral artery (MCA) and umbilical artery (UA) Doppler studies revealed an MCA-resistance index (RI) of 0.89, MCA-peak systolic velocity (PSV) of 49.07 cm/second, and UA-impedance index (II) of 0.49. The 75 g glucose tolerance test was conducted and the result was found to be normal. The mother was advised to be admitted for observation from 28 weeks of gestation for threatened premature delivery. She had a feeling of abdominal tightness but had no breathing difficulty; the cervical length was 15 mm. She was given betamethasone (12 mg per 24 hours, twice) because of the likelihood of preterm delivery at 31 weeks of gestation because of difficulty in controlling uterine contractions. In addition, because of aggravation of pressure symptoms due to polyhydramnios, we performed transabdominal amniocentesis and amniodrainage at 29.4 and 32.4 weeks without complications and removed 1535 mL and 1126 mL of amniotic fluid, respectively. She suffered premature rupture of the fetal membrane at 35.1 weeks and gave birth on the same day by emergency Cesarean section.
The infant was a male child with a birth weight of 3188 g, Apgar scores of 3 at 1 minute and 6 at 5 minutes, and UA pH of 7.383. Spontaneous respiration of the infant was poor, and we performed intratracheal intubation at 9 minutes after birth and started artificial ventilation for respiratory care. A chest X-ray taken at 3 hours after birth (Fig. 1) showed a bell-shaped chest, small in proportion with respect to the body, as well as deformed ribs. We also detected generalized hypotonia, a flat nasal bridge, and a small jaw, suggesting the presence of a chromosomal abnormality. The infant also had an abnormal-looking face.
Immediately following birth, we treated the omphalocele by hygienically safeguarding the umbilical hernia section using a wound retractor folded into a tent shape to prevent damage to the hernial sac, and then waited for the hernial contents (in this case, small intestines) to naturally reduce into the abdominal cavity. Thereafter, at 10 days of age, we performed radical surgery for the omphalocele.
At 13 days of age, we performed endotracheal extubation and the infant was moved to bi-level positive airway pressure. Thereafter, he gradually stopped requiring positive pressure, and spontaneous respiration was established using nasal oxygen administration alone. Enteral feeding was started at 12 days of age. Thereafter, upon trying to feed milk orally, swallowing dysfunction was detected. Enteral feeding (full feeding) was established at 20 days of age along with the commencement of swallowing training.
Because the infant showed omphalocele, polyhydramnios, overweight, and abnormalities identified after birth, that is, thoracic hypoplasia morphological abnormality of the ribs, abnormal swallowing function, and peculiar facial features, we suspected Kagami–Ogata syndrome. After obtaining informed written consent from both the parents, chromosomal banding and genetic testing was performed for the infant.
Chromosome G-banding showed 46 normal XY karyotypes. Genetic testing revealed hypermethylated IG-DMR and MEG3-DMR in the corresponding chromosome 14 imprinted regions. He was, therefore, diagnosed as having Kagami–Ogata syndrome. Furthermore, genetic testing of both the parents was performed after adequate explanation and genetic counselling. Although the alleles in the infant patient originated from both the parents, a comparative genomic hybridization (CGH) array showed microdeletion in the imprinted region. Analyses of both the parents revealed no deletion; thus, the deletion in the infant patient was considered de novo.
The infant was discharged at 90 days of age with domiciliary oxygen therapy. After leaving the hospital, he used home oxygen therapy until he was 1 year and 3 months old, and after that, his breathing condition calmed down. He was able to walk alone at the age of 1 year and 8 months. A delay in language development was noticed and at the age of 2 years and 5 months, no meaningful speech could be recognized.
Journal of Medical Case Reports
For more details click on the link: https://doi.org/10.1186/s13256-019-2298-y
Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd