Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Latest News
    • How a microchip turns...

    How a microchip turns 2-D ultrasound machines to 3-D imaging devices

    Written by Anjali Nimesh Nimesh Published On 2017-12-13T19:25:09+05:30  |  Updated On 13 Dec 2017 7:25 PM IST
    How a microchip turns 2-D ultrasound machines to 3-D imaging devices

    Technology that keeps track of how your smartphone is oriented can now give $50,000 ultrasound machines many of the 3-D imaging abilities of their $250,000 counterparts -- for the cost of a $10 microchip.


    Doctors and engineers from Duke and Stanford universities will demonstrate their device Oct. 31 at the American College of Emergency Physicians (ACEP) Research Forum in Washington, D.C.


    The key to the technology is a fingernail-sized microchip that mounts onto a traditional ultrasound probe -- the plastic scanner that slides over gel-slathered skin to relay two-dimensional images of what lies beneath.


    Just like a Nintendo Wii video game controller, the chip registers the probe's orientation, then uses software to seamlessly stitch hundreds of individual slices of the anatomy together in three dimensions.


    The result is an instant 3-D model similar in quality to a CT scan or MRI, said Joshua Broder, M.D., an emergency physician and associate professor of surgery at Duke Health and one of the creators of the technology. Two-D ultrasound machines with higher resolution have clearer 3-D pictures.


    "With 2-D technology, you see a visual slice of an organ, but without any context, you can make mistakes," Broder said. "These are problems that can be solved with the added orientation and holistic context of 3-D technology. Gaining that ability at an incredibly low cost by taking existing machines and upgrading them seemed like the best solution to us."


    Broder pondered the possibilities of 3-D ultrasound in 2014 while playing with a Nintendo Wii gaming system with his son, he said. With the game console's ability to accurately track the exact position of the controller, he wondered, why not just duct-tape the controller to an ultrasound probe?


    After tinkering on his own for a year, he took sketches to Duke's Pratt School of Engineering, connecting with then-undergraduate Matt Morgan, and biomedical engineering instructors and professors Carl Herickhoff and Jeremy Dahl, who have since taken positions at Stanford where they continue to develop the device.


    The team has used Duke's own 3-D printing labs to create their prototypes, which start with a streamlined plastic holster that slips onto the ultrasound probe. A technician can use the probe as usual or add 3-D images by simply snapping on a plastic attachment containing the location-sensing microchip. To get the best 3-D images, the team also devised a plastic stand to help steady the probe as the user hones in on one part of the anatomy.


    The microchip and the ultrasound probe connect via computer cables to a laptop programmed for the device. As the user scans, the computer program whips up a 3-D model in seconds.


    Both Duke and Stanford are testing the technology in clinical trials to determine how it fits into the flow of patient care. The creators believe some of the most promising uses could be when CT scans or MRIs are not available, in rural or developing areas, or when they are too risky.


    "With trauma patients in the emergency department, we face a dilemma," Broder said. "Do we take them to the operating room not knowing the extent of their internal injuries or bleeding, or do we risk transporting them to a CT scanner, where their condition could worsen due to a delay in care? With our new 3-D technique, we hope to demonstrate that we can determine the source of bleeding, measure the rate of bleeding right at the bedside and determine whether an operation is really needed."


    Newborn babies are also notoriously difficult to get images of, but doctors may need numerous scans when babies are born with fluid on the brain or a congenital condition. MRI machines require patients to be still for minutes at a time, which often means sedating an infant. CT scans provide excellent 3-D images but expose the infant to radiation.


    In their ACEP presentation, Broder and colleagues will describe how they collected 3-D images of the brain of a 7-month-old with hydrocephalus, or fluid on the brain, while the baby napped.


    "Ultrasound is such a beautiful technology because it's inexpensive, it's portable, and it's completely safe in every patient," said Broder. "And it's brought to the bedside and it doesn't interfere with patient care."


    Broder, Herickhoff, Dahl, and Morgan are listed as the inventors on an international patent and believe their current clinical trials and support could allow them to bring the technology to market in a couple of years.


    The team is also working to bridge some of the gaps between their adapted 3-D ultrasound and 3-D machines already on the market, such as the ability to capture a beating heart in motion.


    "In emergency medicine, we use ultrasound to look at every part of the body -- to look at blood vessels that we put catheters into, to checking on a trauma patient to see where they're bleeding," Broder said. "In this case, we can augment 2-D machines and improve every one of those applications. Instead of looking through a keyhole to understand what's in the room, we can open a door and see everything in front of us."

    CT ScanDuke's Pratt School of EngineeringJoshua BrodermicrochipMRI
    Source : Eureka Alert

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Anjali Nimesh Nimesh
    Anjali Nimesh Nimesh
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok