Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Editors Pick
    • Experts grow human...

    Experts grow human brain in a dish

    Written by Meghna Singhania Published On 2017-04-30T12:08:31+05:30  |  Updated On 30 April 2017 12:08 PM IST
    Experts grow human brain in a dish
    National Institutes of Health (NIH)-funded neuroscientists have created a 3D window into the human brain’s budding executive hub assembling itself during a critical period in prenatal development. What’s more, they used it to discover and experimentally correct — in a petri dish — defective cell migration caused by an autism-related disorder.

    Sergiu Pasca, M.D.(link is external), of Stanford University, Stanford, California, a grantee of the NIH’s National Institute of Mental Health (NIMH), and colleagues, report on experiments with forebrain spheroids April 26, 2017 online in the journal Nature.

    The study advances a fast-developing “disease-in-a-dish” technology, in which cultured neurons derived from an individual’s readily-accessible skin cells connect with each other to form 3D brain organoids or “spheroids.” Although tiny, these replicate rudimentary circuitry that can reveal that person’s brain’s unique secrets — even from when it was still under construction.

    During mid-to-late gestation, neurons migrate from deep brain structures to their appointed places and organize themselves into the key working tissue of what will become the human cortex, the outer layer of the brain and seat of higher-order mental functions. This building process is complex and especially vulnerable to genetic and environmental insults that can set the stage for autism, schizophrenia, and other neurodevelopmental brain disorders.

    Previous studies by Pasca’s team produced relatively primitive cortex spheroids that didn’t show how different regions of the forming structure interacted. In this study, Pasca’s team coaxed 3D cell cultures to become spheroids representing two specific regions of the forebrain and fused them together. They then tracked neuronal migrations from a deep brain spheroid to a cortex spheroid that mimicked those seen during normal development.

    For the first time, this new model reveals the developing human forebrain, maturing by building circuits that balance excitatory with inhibitory brain systems. Neurons from spheroids resembling tissue in the lower forebrain region are seen migrating to create cortex circuitry with neurons from spheroids resembling tissue in the upper region. The former communicate a slowing-down (inhibition) of neural activity, while the latter communicate a speeding-up (excitation) of neural activity.

    In spheroids derived from skin cells of patients with Timothy syndrome, an autism-related disorder of known genetic cause, they discovered a defect in the migration of patients’ neurons that caused them to move more frequently but less efficiently -- and experimentally reversed it in the dish with a drug.

    “Today’s recapitulation of a pivotal stage in the cortex’s formation demonstrates the technique’s promise for discovery — and even for testing potential interventions, explained NIMH Director Dr. Joshua Gordon. “It moves us closer to realizing the goal of precision medicine for brain disorders.”

    “The exquisite timing and placement of these different neuron cell types is critical for establishing a balance between excitation and inhibition within brain circuits. This balance is thought to be disrupted in brain disorders,” explained Dr. David Panchision, chief of the NIMH Developmental Neurobiology Program that supports the project. “Re-playing these developmental processes with a patient’s own cells can allow us to determine what distinguishes these different disorders at a molecular and cellular level.”

    “Our research provides a proof-of-concept for understanding the interaction of specific cell types and for building — as well as probing — circuits within personalized human microphysiological systems,” said Pasca.
    Braindishhuman brainNational Institutes of HealthNIMH Developmental Neurobiology Program
    Source : National Institute of Health US

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Meghna Singhania
    Meghna Singhania
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok