Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • News
    • Cancer
    • Compound found in...

    Compound found in broccoli, kale may be a new therapeutic option for treating cancer

    Written by Medha Baranwal Baranwal Published On 2019-05-30T19:28:14+05:30  |  Updated On 30 May 2019 7:28 PM IST
    Compound found in broccoli, kale may be a new therapeutic option for treating cancer

    DELHI: A natural compound found in broccoli, kale, and other cruciferous vegetables may keep cancer at bay by activating a tumor suppressor gene, suggests a recent study.


    Our body has its own defense mechanism to fight cancer, but sometimes these mechanisms become weak to suppress tumor growth leading to cancer. Now, the study published in the journal Science demonstrated that indole-3-carbinol (I3C) -- a compound found in cruciferous vegetables such as broccoli, cabbage, kale, and cauliflower impeded tumor growth in a mouse model of prostate cancer. I3C promotes PTEN, a tumor suppressor protein whose activity is often decreased in human cancers, explain the authors.


    Reactivation of the tumor suppressor PTEN may provide a strategy for battling tumors.


    Pier Paolo Pandolfi, Director of the Cancer Center and Cancer Research Institute at Beth Israel Deaconess Medical Center, and colleagues sought to identify upstream regulators of PTEN dimerization and membrane localization, inhibition of which may restore PTEN activity and provide therapeutic opportunities against cancer.


    "We found a new important player that drives a pathway critical to the development of cancer, an enzyme that can be inhibited with a natural compound found in broccoli and other cruciferous vegetables," said Pandolfi. "This pathway emerges not only as a regulator for tumor growth control but also as an Achilles' heel we can target with therapeutic options."


    Also Read: Broccoli consumption during pregnancy reduces breast cancer risk in child

    PTEN, a well-known and potent tumor suppressive gene, is one of the most frequently mutated, deleted, down-regulated or silenced tumor suppressor genes in human cancers. Certain inherited PTEN mutations can cause syndromes characterized by cancer susceptibility and developmental defects. But because the complete loss of the gene triggers an irreversible and potent failsafe mechanism that halts the proliferation of cancer cells, both copies of the gene (humans have two copies of each gene; one from each parent) are rarely affected. Instead, tumor cells exhibit lower levels of PTEN, raising the question of whether restoring PTEN activity to normal levels in the cancer setting can unleash the gene's tumor suppressive activity.


    Carrying out a series of experiments in cancer-prone mice and human cells, the team revealed that a gene called WWP1 -- which is also known to play a role in the development of cancer -- produces an enzyme that inhibits PTEN's tumor suppressive activity. How to disable this PTEN kryptonite? By analyzing the enzyme's physical shape, the research team's chemists recognized that a small molecule -- formally named indole-3-carbinol (I3C), an ingredient in broccoli and its relatives -- could be the key to quelling cancer-causing effects of WWP1.


    Also Read: Eating broccoli thrice a week lowers liver cancer risk

    When Pandolfi and colleagues tested this idea by administering I3C to cancer-prone lab animals, the scientists found that the naturally occurring ingredient in broccoli inactivated WWP1, releasing the brakes on the PTEN's tumor suppressive power.


    "Either genetic or pharmacological inactivation of WWP1 with either CRISPR technology or I3C could restore PTEN function and further unleash its tumor suppressive activity," said Pandolfi. "These findings pave the way toward a long-sought tumor suppressor reactivation approach to cancer treatment."


    For detailed study log on to DOI: 10.1126/science.aau0159

    BroccoliBrussels sproutscabbagecancercancer cellscancer treatmentcauliflowercollard greenscruciferous vegetablesI3Cindole 3 carbinolkalenew cancer treatmentPier Paolo PandolfiPTENScience journalsuppressing tumor growthtumor growthtumor suppressortumor suppressor genetumor suppressor proteinvegetablesWWP1 gene
    Source : With inputs from Science�

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Medha Baranwal Baranwal
    Medha Baranwal Baranwal
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok