Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • News
    • Cancer
    • Artificial...

    Artificial intelligence can detect acute myeloid leukemia with high reliability

    Written by Hina Zahid Published On 2019-12-25T19:10:04+05:30  |  Updated On 25 Dec 2019 7:10 PM IST
    Artificial intelligence can detect acute myeloid leukemia with high reliability

    Researchers at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn have found that artificial intelligence can detect acutemyeloid leukemia (AML) with high reliability. Their approach is based on the analysis of the gene activity of cells found in the blood. The research results have been published in the journal iScience.


    Acute myeloid leukemia (AML) is one of the most common forms of blood cancers.Without adequate treatment, this form of leukemia leads to death within weeks. AML is associated with the proliferation of pathologically altered bone marrow cells, which can ultimately enter the bloodstream.





    Artificial intelligence is a much-discussed topic in medicine, especially in the field of diagnostics. "We aimed to investigate the potential on the basis of a specific example," explains Prof. Joachim Schultze, a research group leader at the DZNE and head of the Department for Genomics and Immunoregulation at the LIMES Institute of the University of Bonn. "Because this requires large amounts of data, we evaluated data on the gene activity of blood cells. Numerous studies have been carried out on this topic and the results are available through databases. Thus, there is an enormous data pool. We have collected virtually everything that is currently available."

    Fingerprint of Gene Activity

    Schultze and his colleagues focused on the "transcriptome," which is a kind of fingerprint of gene activity. In each and every cell, depending on its condition, only certain genes are actually "switched on," which is reflected in their profiles of gene activity. Exactly such data -- derived from cells in blood samples and spanning many thousands of genes -- were analysed in the current study. "The transcriptome holds important information about the condition of cells. However, classical diagnostics is based on different data. We therefore wanted to find out what an analysis of the transcriptome can achieve using artificial intelligence, that is to say trainable algorithms," said Schultze, who is member of the Bonn-based "ImmunoSensation" cluster of excellence. "In the long term, we intend to apply this approach to further topics, in particular in the field of dementia."

    The current study focused on AML. Without adequate treatment, this form of leukemia leads to death within weeks. AML is associated with the proliferation of pathologically altered bone marrow cells, which can ultimately enter the bloodstream. Ultimately both healthy cells and tumor cells drift in the blood. All these cells exhibit typical gene activity patterns, which were all considered in the analysis. Data from more than 12,000 blood samples -- these came from 105 different studies -- were taken into account: the largest dataset to date for a metastudy on AML. Approximately 4,100 of these blood samples derived from individuals diagnosed with AML, the remaining ones had been taken from individuals with other diseases or from healthy individuals.

    High Hit Rate

    The scientists fed their algorithms parts of this data set. The input included information about whether a sample came from an AML patient or not. "The algorithms then searched the transcriptome for disease-specific patterns. This is a largely automated process. It's called machine learning," said Schultze. Based on this pattern recognition, further data was analysed and classified by the algorithms, i.e. categorized into samples with AML and without AML. "Of course, we knew the classification as it was listed in the original data, but the software did not. We then checked the hit rate. It was above 99 percent for some of the applied methods. In fact, we tested various methods from the repertoire of machine learning and artificial intelligence. There was actually one algorithm that was particularly good, but the others were close behind."

    Application in Practice?

    Put into application, this method could support conventional diagnostics and help save costs, said Schultze. "In principle, a blood sample taken by the family doctor and sent to a laboratory for analysis could suffice. I guess that the cost would be less than 50 euros." Classical AML diagnostics includes a variety of methods. Some of these cost a few hundred euros per run, Schultze noted. "However, we have not yet developed a workable test. We have only shown that the approach works in principle. So we have laid the groundwork for developing a test."

    Schultze emphasised that the diagnosis of AML will continue to require specialised physicians in the future. "The aim is to provide the experts with a tool that supports them in their diagnosis. In addition, many patients go through a real odyssey until they finally end up with a specialist and get a diagnosis." Because in the early stages the symptoms of AML can resemble those of a bad cold. However, AML is a life-threatening disease that should be treated as quickly as possible. "With a blood test, as it seems possible on the basis of our study, it is conceivable that the family doctor would already clarify a suspicion of AML. And when the suspicion is confirmed, the patient is referred to a specialist. Possibly, the diagnosis would then happen earlier than it does now and therapy could start earlier."

    For further reference log on to:

    iScience, 2019; 100780 DOI: 10.1016/j.isci.2019.100780

    acute myeloid leukemiaArtificial  intelligenceiScienceleukemiaProf Joachim Schultze
    Source : iScience

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Hina Zahid
    Hina Zahid
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok