Speciality Medical Dialogues
    • facebook
    • twitter
    Login Register
    • facebook
    • twitter
    Login Register
    • Medical Dialogues
    • Education Dialogues
    • Business Dialogues
    • Medical Jobs
    • Medical Matrimony
    • MD Brand Connect
    Speciality Medical Dialogues
    • Editorial
    • News
        • Anesthesiology
        • Cancer
        • Cardiac Sciences
        • Critical Care
        • Dentistry
        • Dermatology
        • Diabetes and Endo
        • Diagnostics
        • ENT
        • Featured Research
        • Gastroenterology
        • Geriatrics
        • Medicine
        • Nephrology
        • Neurosciences
        • Nursing
        • Obs and Gynae
        • Ophthalmology
        • Orthopaedics
        • Paediatrics
        • Parmedics
        • Pharmacy
        • Psychiatry
        • Pulmonology
        • Radiology
        • Surgery
        • Urology
    • Practice Guidelines
        • Anesthesiology Guidelines
        • Cancer Guidelines
        • Cardiac Sciences Guidelines
        • Critical Care Guidelines
        • Dentistry Guidelines
        • Dermatology Guidelines
        • Diabetes and Endo Guidelines
        • Diagnostics Guidelines
        • ENT Guidelines
        • Featured Practice Guidelines
        • Gastroenterology Guidelines
        • Geriatrics Guidelines
        • Medicine Guidelines
        • Nephrology Guidelines
        • Neurosciences Guidelines
        • Obs and Gynae Guidelines
        • Ophthalmology Guidelines
        • Orthopaedics Guidelines
        • Paediatrics Guidelines
        • Psychiatry Guidelines
        • Pulmonology Guidelines
        • Radiology Guidelines
        • Surgery Guidelines
        • Urology Guidelines
    LoginRegister
    Speciality Medical Dialogues
    LoginRegister
    • Home
    • Editorial
    • News
      • Anesthesiology
      • Cancer
      • Cardiac Sciences
      • Critical Care
      • Dentistry
      • Dermatology
      • Diabetes and Endo
      • Diagnostics
      • ENT
      • Featured Research
      • Gastroenterology
      • Geriatrics
      • Medicine
      • Nephrology
      • Neurosciences
      • Nursing
      • Obs and Gynae
      • Ophthalmology
      • Orthopaedics
      • Paediatrics
      • Parmedics
      • Pharmacy
      • Psychiatry
      • Pulmonology
      • Radiology
      • Surgery
      • Urology
    • Practice Guidelines
      • Anesthesiology Guidelines
      • Cancer Guidelines
      • Cardiac Sciences Guidelines
      • Critical Care Guidelines
      • Dentistry Guidelines
      • Dermatology Guidelines
      • Diabetes and Endo Guidelines
      • Diagnostics Guidelines
      • ENT Guidelines
      • Featured Practice Guidelines
      • Gastroenterology Guidelines
      • Geriatrics Guidelines
      • Medicine Guidelines
      • Nephrology Guidelines
      • Neurosciences Guidelines
      • Obs and Gynae Guidelines
      • Ophthalmology Guidelines
      • Orthopaedics Guidelines
      • Paediatrics Guidelines
      • Psychiatry Guidelines
      • Pulmonology Guidelines
      • Radiology Guidelines
      • Surgery Guidelines
      • Urology Guidelines
    • Home
    • Latest News
    • Active molecule in...

    Active molecule in Psoriasis drug shows activity against malaria

    Written by Deepanjana Sarkar Published On 2019-09-24T19:05:18+05:30  |  Updated On 24 Sept 2019 7:05 PM IST
    Active molecule in Psoriasis drug shows activity against malaria

    Netherlands: Malaria is a global health concern contributing to around 400,000 deaths annually. When it comes to its treatment, the most challenging part is the resistance developed by malaria parasite against most of the drugs. This necessitates novel drug targets and molecules capable of targeting different stages of the parasite. With this perspective, an international team of researchers has come up finding an active pharmaceutical ingredient (API)-- primarily used in psoriasis drugs-- which has shown strong activity against malaria. The results were published in the journal Science Translational Medicine.


    This active molecule called pantothenamides, has been modified by the team to increase its stability in humans. The new compounds stops the malaria parasite from replicating in infected humans and from being transmitted to mosquitoes and are effective against malaria parasites resistant to currently available drugs. The team found that the modified pantothenamide molecules not only interfere with the development of the malaria parasite during its asexual growth phase in the blood but also prevent transmission of the sexual form of the parasite from human blood to mosquitoes.


    "We have known for a long time that pantothenamides are extremely potent against the malaria parasite, but they become unstable within biological fluids because an enzyme clips them apart before they can act," said Manuel Llinás, professor of biochemistry and molecular biology and of chemistry at Penn State and an author of the paper. "Our team of collaborators, led by Koen Dechering at TropIQ Health Sciences and Joost Schalkwijk at Radboud University Medical Center in the Netherlands, found that changing a chemical bond in a pantothenamide molecule prevents this clipping, making it viable for use as a new antimalarial drug."


    "By also preventing the transmission of malaria parasites from infected people into mosquitoes, these pantothenamides can reduce the chances that mosquitoes will be infectious to others," said Llinás. "It is currently widely accepted that next-generation antimalarial drugs must target the parasite at multiple stages to both cure the disease in an infected individual and prevent its spread to others."


    Llinás and Erik Allman, a postdoctoral scholar at Penn State at the time of the research, investigated exactly how the four most potent molecules in the compound class kill the malaria parasite. Specifically, they examined how these compounds affect the parasite's metabolism while growing in human blood.


    The team discovered that, because the pantothenamide molecule closely resembles the essential vitamin B5, it is mistakenly taken in and metabolized by the parasite. This leads to the formation of molecular analogs, or antimetabolites, which decrease the parasite's production of acetyl-CoA, a compound critical for its survival.


    The team discovered that, because the pantothenamide molecule closely resembles the essential vitamin B5, it is mistakenly taken in and metabolized by the parasite. This leads to the formation of molecular analogs, or antimetabolites, which decrease the parasite's production of acetyl-CoA, a compound critical for its survival.


    "The molecule has a mechanism of action that hasn't been used before," said Dechering. "This means that there's no resistance to the drug as yet, and it is effective against many forms of malaria. Because parasite resistance to malaria drugs is a major problem worldwide, we are very close to a breakthrough."


    "Pantothenamides have simple chemistry, so they are easy and inexpensive to make," said Llinás, "And we now know their mode of action, which we don't always know before moving into drug development. This makes pantothenamides excellent candidates for further development and eventual clinical trials."


    For more details, click on the link


    Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in Plasmodium falciparum. Science Translational Medicine, 2019; 11 (510): eaas9917 DOI: 10.1126/scitranslmed.aas9917

    acetyl-CoAactive pharmaceutical ingredientAntimalarial drugsAPIMalariamalaria parasitemalaria transmissionManuel LlinásMedical newsmedical news indiapantothenamidepantothenamidesPenn statePlasmodium falciparumpsoriasispsoriasis drugScience Translational Medicinetransmission

    Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2020 Minerva Medical Treatment Pvt Ltd

    Deepanjana Sarkar
    Deepanjana Sarkar
      Show Full Article
      Next Story
      Similar Posts
      NO DATA FOUND

      • Email: info@medicaldialogues.in
      • Phone: 011 - 4372 0751

      Website Last Updated On : 12 Oct 2022 7:06 AM GMT
      Company
      • About Us
      • Contact Us
      • Our Team
      • Reach our Editor
      • Feedback
      • Submit Article
      Ads & Legal
      • Advertise
      • Advertise Policy
      • Terms and Conditions
      • Privacy Policy
      • Editorial Policy
      • Comments Policy
      • Disclamier
      Medical Dialogues is health news portal designed to update medical and healthcare professionals but does not limit/block other interested parties from accessing our general health content. The health content on Medical Dialogues and its subdomains is created and/or edited by our expert team, that includes doctors, healthcare researchers and scientific writers, who review all medical information to keep them in line with the latest evidence-based medical information and accepted health guidelines by established medical organisations of the world.

      Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement or prescription.Use of this site is subject to our terms of use, privacy policy, advertisement policy. You can check out disclaimers here. © 2025 Minerva Medical Treatment Pvt Ltd

      © 2025 - Medical Dialogues. All Rights Reserved.
      Powered By: Hocalwire
      X
      We use cookies for analytics, advertising and to improve our site. You agree to our use of cookies by continuing to use our site. To know more, see our Cookie Policy and Cookie Settings.Ok